Cochrane Data Base Guidelines 2014, for PGD and PGS

Preimplantation genetic diagnosis is an alternative to prenatal diagnosis for the detection of genetic disorders in couples at risk of transmitting a genetic condition to their offspring. Preimplantation genetic screening is being proposed to improve the effectiveness of in vitro fertilization by screening for embryonic aneuploidy. Though FISH-based PGS showed adverse effects on IVF success, emerging evidence from new studies using comprehensive chromosome screening technology appears promising.

Recommendations

  1. Before preimplantation genetic diagnosis is performed, genetic counselling must be provided by a certified genetic counsellor to ensure that patients fully understand the risk of having an affected child, the impact of the disease on an affected child, and the benefits and limitations of all available options for preimplantation and prenatal diagnosis. (III-A)
  2. Couples should be informed that preimplantation genetic diagnosis can reduce the risk of conceiving a child with a genetic abnormality carried by one or both parents if that abnormality can be identified with tests performed on a single cell or on multiple trophectoderm cells. (II-2B) 3. Invasive prenatal or postnatal testing to confirm the results of preimplantation genetic diagnosis is encouraged because the methods used for preimplantation genetic diagnosis have technical limitations that include the possibility of a false result. (II-2B)
  3. Trophectoderm biopsy has no measurable impact on embryo development, as opposed to blastomere biopsy. Therefore, whenever possible, trophectoderm biopsy should be the method of choice in embryo biopsy and should be performed by experienced hands. (I-B)
  4. Preimplantation genetic diagnosis of single-gene disorders should ideally be performed with multiplex polymerase chain reaction coupled with trophectoderm biopsy whenever available. (II-2B)
  5. The use of comprehensive chromosome screening technology coupled with trophectoderm biopsy in preimplantation genetic diagnosis in couples carrying chromosomal translocations is recommended because it is associated with favourable clinical outcomes. (II-2B)
  6. Before preimplantation genetic screening is performed, thorough education and counselling must be provided by a certified genetic counsellor to ensure that patients fully understand the limitations of the technique, the risk of error, and the ongoing debate on whether preimplantation genetic screening is necessary to improve live birth rates with in vitro fertilization. (III-A)
  7. Preimplantation genetic screening using fluorescence in situ hybridization technology on day-3 embryo biopsy is associated with decreased live birth rates and therefore should not be performed with in vitro fertilization. (I-E)
  8. Preimplantation genetic screening using comprehensive chromosome screening technology on blastocyst biopsy, increases implantation rates and improves embryo selection in IVF cycles in patients with a good prognosis. (I-B).

Canadian Task Force (CTF ) , level of evidence

  • Level I: Evidence from at least one randomized controlled trial,
  • Level II1: Evidence from at least one well designed cohort study or case control study, i.e. a controlled trial which is not randomized
  • Level II2: Comparisons between times and places with or without the intervention
  • Level III: Opinions of respected authorities, based on clinical experience, descriptive studies or reports of expert committees.

The CTF graded their recommendations into a 5-point A–E scale: A: Good level of evidence for the recommendation to consider a condition, B: Fair level of evidence for the recommendation to consider a condition, C: Poor level of evidence for the recommendation to consider a condition, D: Fair level evidence for the recommendation to exclude the condition, and E: Good level of evidence for the recommendation to exclude condition from consideration.

Ref

Dahdouh EM, Balayla J, Audibert F, et al. Technical Update: Preimplantation Genetic Diagnosis and Screening. J Obstet Gynaecol Can. 2015;37(5):451–463. doi:10.1016/s1701-2163(15)30261-